Cytochrome c Provides an Electron-Funneling Antenna for Efficient Photocurrent Generation in a Reaction Center Biophotocathode

نویسندگان

  • Vincent M Friebe
  • Diego Millo
  • David J K Swainsbury
  • Michael R Jones
  • Raoul N Frese
چکیده

The high quantum efficiency of photosynthetic reaction centers (RCs) makes them attractive for bioelectronic and biophotovoltaic applications. However, much of the native RC efficiency is lost in communication between surface-bound RCs and electrode materials. The state-of-the-art biophotoelectrodes utilizing cytochrome c (cyt c) as a biological wiring agent have at best approached 32% retained RC quantum efficiency. However, bottlenecks in cyt c-mediated electron transfer have not yet been fully elucidated. In this work, protein film voltammetry in conjunction with photoelectrochemistry is used to show that cyt c acts as an electron-funneling antennae that shuttle electrons from a functionalized rough silver electrode to surface-immobilized RCs. The arrangement of the two proteins on the electrode surface is characterized, revealing that RCs attached directly to the electrode via hydrophobic interactions and that a film of six cyt c per RC electrostatically bound to the electrode. We show that the additional electrical connectivity within a film of cyt c improves the high turnover demands of surface-bound RCs. This results in larger photocurrent onset potentials, positively shifted half-wave reduction potentials, and higher photocurrent densities reaching 100 μA cm-2. These findings are fundamental for the optimization of bioelectronics that utilize the ubiquitous cyt c redox proteins as biological wires to exploit electrode-bound enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath

An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...

متن کامل

Application of Response Surface Methodology as an Efficient Approach for Optimization of Operational Variables in Benzene Hydroxylation to Phenol by V/SBA-16 Nanoporous Catalyst

Herein, we prepared a V/SBA-16 catalyst using vanadyl acetylacetonate as a precursor and SBA-16 nanoporous silica as a support via an immobilization technique. The ordered mesoporous structure of catalyst was determined by X-ray diffraction  and transmission electron microscopy techniques , and the catalyst was evaluated in the benzene hydroxylation to phenol with hydrogen peroxide (H2O2) as a ...

متن کامل

CdS nanoparticles: An efficient, clean and reusable heterogeneous catalyst for one-pot procedure for synthesis of 3,4-Dihydropyrimidin-2(1H)-ones in solvent-free conditions

3,4-Dihydropyrimidinones and their derivatives are synthesized via Biginelli routes involving an aromatic aldehydes, ethylacetoacetates and urea in one-pot procedure by using CdS nanoparticles as efficient heterogeneous catalyst in solvent-free conditions. Compared with classical Biginelli reaction reported in 1893, this new method provides much improved modification in terms of simplicity. The...

متن کامل

CdS nanoparticles: An efficient, clean and reusable heterogeneous catalyst for one-pot procedure for synthesis of 3,4-Dihydropyrimidin-2(1H)-ones in solvent-free conditions

3,4-Dihydropyrimidinones and their derivatives are synthesized via Biginelli routes involving an aromatic aldehydes, ethylacetoacetates and urea in one-pot procedure by using CdS nanoparticles as efficient heterogeneous catalyst in solvent-free conditions. Compared with classical Biginelli reaction reported in 1893, this new method provides much improved modification in terms of simplicity. The...

متن کامل

Vitamin C as a green and efficient catalyst in synthesis of quinoxaline derivatives at room temperature

A simple, highly efficient and green procedure for the condensation of o-phenylenediamines with 1, 2-dicarbonyl compounds in the presence of vitamin C, as an inexpensive organocatalyst, is described. Using this method, variety of quinoxaline derivatives with different electron releasing and electron withdrawing substituents, are produced in high to excellent yields at room temperature in ethano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017